对宇宙认识的变化
古时候就有了“宇宙”这个词,但其含义与今天的大不一样。人类对“宇宙”的认识从自身居住的附近地区到地球,到行星,到太阳,再到太阳系……宇宙的空间正随人们的认识而逐渐“变大”。
在18世纪的人们眼里,宇宙的大小还只局限于太阳系。随着科学技术的发展,人们逐渐认识到:地球不是太阳系的中心,太阳才是太阳系的中心,而太阳也只是天空中数以万计的恒星中的一颗。于是,人们心目中的“宇宙”开始逐渐扩展到了银河系。18世纪之后,人们才弄清了太阳也只不过是银河系中众多的恒星中的一颗而已。
银河系的直径约10万光年,厚度约1万光年,太阳绕银河系中心旋转一周约需2亿年。随着人们的认识范围逐渐扩大,人们心目中的“宇宙”已不再是银河系——人类已经认识到,在银河系以外,还有许多“河外星系”存在。这些“河外星系”离我们很远,即使通过大型的望远镜,也仅仅能看到一些模糊的光点。
十几个或几十个星系在一起组成了“星系群”。我们的银河系就同它周围的19个星系组成了一个“星系群”,这个星系群的直径大约为260万光年。
比“星系群”更高一级的星系组织是“星系团”,它由成百上千个星系组成。“室女星座”里有一个星系团,包含1000个以上的星系,其中心离我们大约7000光年。“后发星座”里,包含了2700个星系,距离我们大约2.4亿光年。而为数不详的“星系团”又构成了总星系。
宇宙的体积
通过了解人们认识宇宙的过程,我们已经可以初步地回答“宇宙有多大”
这个问题了。人们从自身居住的区域认识到地球,又从地球认识到太阳系,眼界扩大了成百上千倍;又从太阳系认识到银河系,眼界扩大了1亿倍;从银河系认识到总星系,眼界扩大了10000亿倍……随着人们认识的不断深化,宇宙的体积也在不断扩大。几十年前,总星系的半径还只有10亿光年,现在却已达到100亿光年……爱因斯坦曾经“计算”出宇宙的半径为10亿光年,后来他又修订了“计算结果”,认为宇宙的半径是35亿光年。事实证明,他所计算的宇宙大小的范围一次又一次地被突破了。
无限的宇宙
从天文学的角度上看,宇宙是有限的。宇宙的大小,实际上可以认为是总星系的大小,是一个以一定长度为半径的有限的时间和空间范围。总星系是目前天文学所能探测到的最远的世界。目前,人们对宇宙的认识只能局限于总星系。从哲学角度上来讲,宇宙不仅在空间上是无限的,在时间上也是无限的。时间上和空间上的无限,才使得宇宙能够成为一个统一的整体而存在。
目前,人类认为总星系的半径为700亿~800亿光年,也就是我们心目中宇宙的大小,但700亿~800亿光年以外,还可能有数不清的星系和星系团。
总星系究竟有多大?它的边缘在哪里?它的中心又在何方?这些问题,人类何时能找到答案呢?
宇宙弦之谜
宇宙弦这一物理概念是1981年维伦金等人提出来的。他们认为,宇宙大爆炸所产生的威力应该形成无数细而长且能量高度集聚的管子,这种管子便叫做宇宙弦。大家知道,池水在冬季结冰时,起初,水面的液体是均匀的,随着气温的下降,小块小块的冰开始分散地长出来,但不同池区的冰晶不一定都有相同的取向,当冰块长大互相挤压时就会出现裂缝和断层等“缺陷”。同理,当宇宙从原始热大爆炸状态冷却下来,电磁——弱互相作用与强互相作用的对称性被破坏时,在结构上也会产生类似的裂隙。这种由基本粒子物理学的大统一理论所预言的缺陷有零维(点)、一维(线)和二维(面)三种:零维的是磁单极子,一维的便是宇宙弦,二维的叫做畴壁。本文只谈宇宙弦。
理论工作者赋予宇宙弦的性质是异乎寻常的。如果在房间里有一节这样的弦,是很难被发现的。它有点儿像蜘蛛丝,但远比原子还细。你可以穿过它走路而绝不会发现它。但是,1厘米的宇宙弦比整座喜马拉雅山的质量还要大,直径细到10—30厘米,但质量却高达每厘米1022克。其次,质量是可变的,完全决定于其张力:拉得越长,绷得越紧,质量越大,它的强度也极大。
宇宙弦的活动与其邻近的天体、宇宙膨胀密切相关。起初,宇宙弦以接近于光的传播速度跟随宇宙一起膨胀,并具有各种复杂的形状和运动。但是,普遍膨胀使宇宙弦的弯曲部分被拉直并使振动慢下来。当宇宙弦振动时,产生互相交和自相交现象,其结果形成了许多闭合的弦圈。大弦圈随宇宙继续膨胀而增大其“个头”,同时其形状更加平滑。较小的弦圈不停地振动,成为引力辐射的源泉。这就是理论家赋予宇宙弦的另一种奇特性质:
要么伸展到无穷远处,要么形成闭合的无终点的环圈。
按照爱因斯坦广义相对论,在大质量宇宙弦附近将发生空间畸变,这对于光线的传播将产生一定的影响。来自运动着的宇宙弦后面的光线掠过弦旁时将被折射,产生光源的双重像,即所谓引力透镜效应;此外,从空间畸变处发出的电磁辐射其波长将发生蓝移现象,这一效应对宇宙背景辐射将会有察觉得出来的影响,但迄今未观测到辐射温度在“宇宙弦”的一边升高和在另一边降低的现象。
宇宙弦论的两位创始人泽尔多维奇和维伦金曾建议这些假设的、高度绷紧的细弦可能是从早期宇宙的气体中生长出星系的“种子”。但近来对这一问题有两种截然相反的建议:一种学说认为宇宙弦的强大的引力使在它们周围的物质聚集起来,从而开始了星系的形成。但更新的一种推测恰恰相反,认为从这些弦发出的电磁辐射在早期宇宙的物质中吹出了许多“泡泡”,并把这些原始物质压缩在泡与泡之间形成“薄饼”,而星系则是在这些泡壁间形成的。
近来,维伦金、韦顿等人又进一步提出关于超导宇宙弦的设想,他们猜测,在我们银河系中心可能存在着一个这样的小宇宙弦圈,并认为银河系中心的射电天图上所显示出来的细线可能就是证明,但尚需通过光学图像来定案。更有趣的是他们关于把超导宇宙弦作为类星体中心发电机的建议,这可与流行已久的大质量黑洞模型相比较。
从表面上看,宇宙弦论可以解释宇宙大尺度结构的一些观测事实:如星系沿空洞周围形成弦线式的环状分布,许多星系团呈扁长形,发现了几亿光年长的超星系团和星系链等,但尚需精度更高的观测数据来加以验证。很多理论问题也需要继续探讨,如有关超导宇宙弦的电流耗散、与等离子体的作用、磁发电机效应等。可见,宇宙弦的本性尚是一个不解之谜,还要作深入的探讨和观测。
科学家追踪宇宙不明冷暗物质
一个由来自中国科学院高能物理研究所、清华大学、中国原子能研究院等9家单位近25名专家组成的合作小组已经成立,他们在我国开展一项目前世界天体与粒子物理及宇宙科学界高度重视的最热门课题研究:追踪一种可能是宇宙早期爆炸后遗留至今的弱作用重粒子——超对称粒子。曾任该项目合作组中方首席科学家、中国科学院高能物理研究所研究员戴长江说:“一旦经过科学的重复证实这种弱作用重粒子确实存在,将极大地支持超对称粒子模型。不管最终结果如何,对这种新粒子的寻找对于粒子物理、天体物理及宇宙学的发展具有重大的科学意义。”
冷暗物质之谜
从原子物理到原子核物理,再到今天的粒子物理,物理学的日臻完善已经能够很好地解释许多诸如复杂的天体运动本质的自然现象。宇宙学模型认为,宇宙大爆炸后经历了超高能、高能、低能过程,对应的物理规律也符合大统一、弱电统一和量子色动力学,宇宙大爆炸及其演化所产生的粒子也遵循这些规律。
然而,在宇宙中还可能存在着一些弱作用冷暗物质粒子,它们的形成及运动规律是现有粒子物理模型所不能解释的,于是科学家们又提出了超对称粒子物理模型。现代天文观测和爆炸宇宙论的研究表明,宇宙中的物质绝大多数是暗物质,而暗物质中大多数是由冷暗物质粒子组成的非重子暗物质,现在普遍的看法认为,这种冷暗物质粒子在宇宙中的含量超过20%。戴长江研究员介绍说,尽管目前实验室还不能对这种新物理模型假说提供有力的证据,但超对称粒子物理模型能很好地解释宇宙螺旋星系中星云旋转速度几乎不随星云盘径向的距离而改变以及在星系空间气体辐射的X线观测中发现的气体平均速度大于其逃逸速度。自1985年以来,宇宙中暗物质的研究已成为天体物理、粒子物理和宇宙学的交叉热点,其中对冷暗物质粒子——超对称粒子的观测研究是当今非加速器物理实验最热门的课题之一。
冷暗物质之争
美国、法国、日本等科技大国的物理学家正在夜以继日地观测研究宇宙冷暗物质,如西欧核子中心(LSC)正在建造一个大型超高能粒子加速器,以捕捉和观测宇宙中可能存在的超对称粒子。与此同时,一个目标相同但采取自然观测以降低实验成本的科研小组在经过了600天的观测后,已经得到了能够证实超对称粒子确实存在的初步证据,这个科研小组由意大利罗马大学牵头,中国科学院高能物理研究所由于在实验方法技巧、数据系统处理、电子插件研制等方面具有优势,1992年在法籍华人陶嘉琳女士的促成下成为重要合作单位之一。
该科研小组研制了100千克放射性很低的碘化钠晶体阵列,用于在自然界直接寻找相互作用极弱的超对称粒子。为了防止宇宙线的干扰,他们将实验设备安装在意大利格朗萨索国家实验室中,这个实验室位于岩层厚度达1000米的阿尔卑斯山脉下的一个山洞中,可以很好地屏蔽宇宙线。在对1996~1999年累计达600天的有效实验数据进行分析后,该实验小组获得了3个周期的年调制效应,显著性近4倍标准偏差,种种迹象表明,宇宙中可能存在超对称粒子。
他们甚至还估计出了这种超对称粒子的质量和流强上限。
正如美国南卡罗来纳大学的物理学家弗兰克·阿维尼奥内所评说的:“如果这一发现属实,无疑是具有诺贝尔奖水平的。”当意中科研小组对外公开他们的发现时,在科学界自然引起轩然大波。日前,美国斯坦福大学的物理学家们对外宣称也进行了一项捕获宇宙中弱作用重粒子的实验,“但结果可能与意中科研小组的研究成果相抵触”。在随后举行的第4届宇宙暗物质来源及探测国际研讨会上,意大利罗马大学的科学家代表驳斥了斯坦福大学的结论,认为“两项实验之间存在的实质性区别以及弱作用重粒子的未知属性可能意味着我们最终也许会发现两项实验的结果都是正确的”。
冷暗物质之梦
戴长江研究员这样描述这种未知的超对称粒子:质量至少是质子的50倍,由于和其他物质发生相互作用的概率很低,能够几乎不留痕迹地经过其他物质。
他说:“我们现在要和时间赛跑,和世界上众多的科研机构竞争,一旦证实宇宙中真的存在这种用常规方法观测不到的冷暗物质粒子,对爆炸宇宙学模型和超对称粒子物理模型将是一个强烈的支持,也就把我们对客观规律的认识大大向前推进了一步。”
由于这种冷暗物质粒子具有弱作用的特性,因此要在实验室里记录和捕捉它极其困难。
戴长江研究员介绍说,目前,科学界一般用两种方法来探测它,一是间接法,采用地下大型的中微子探测器或空间磁谱仪等规模大、接收度高的设备,通过探测正反超对称粒子湮灭所产生的次级粒子来确认,但此法由于中间过程多,待定参数也多,较难获得准确的观测结果;二是直接法,即直接探测超对称粒子经过实验晶体阵列时留下的极其微弱的作用,此法由于成功的概率很低,因此需要组建相当规模的高灵敏度的探测系统和开发相应的实验技术。
据了解,目前意中科研小组已将用于记录超对称粒子弱作用的碘化钠晶体阵列由100千克扩大为250千克,仍由两国合作继续日夜不停地观测。我国在国家自然科学基金的支持下,由戴长江研究员组织,也已成立了由来自中国科学院高能物理研究所、清华大学、中国原子能研究院等9家单位的25名专家组成的科研队伍,准备采取另一种500千克二氟化钙晶体阵列探测系统去进行观测鉴定,实验地点有可能选在北京航空博物馆或京郊某一大山洞中。
看来,这的确是值得期待的事情啊。
宇宙中的智慧生物探索
21世纪的地球居民,并不是宇宙中唯一的智慧生物——这个说法能令人信服吗?
天文学家们估计,在望远镜所及的范围内,大约有1020颗恒星,假设1000颗恒星当中有1颗恒星有行星,而1000颗行星当中有1颗行星具备生命所必需的条件,这样计算的结果,还剩下1014颗。假设在这些星球中,有1译颗星球具有生命存在需要的大气层,那么还有1011颗星球具备着生命存在的前提条件,这个数字仍是大得惊人。即使人们又假定其中只有1译已经产生生命,那么也有1亿颗行星存在着生命。如果我们进一步假设,在100颗这样的行星中只有1颗真正能够容许生命存在,仍将有100万颗有生命的行星……毫无疑问,和地球类似的行星是存在的,有类似的混合大气,有类似的引力,有类似的植物,甚至可能有类似的动物。然而,其他的行星非要有类似地球的条件才能维持生命吗?
实际上,生命只能在类似地球的行星上存在和发展的假设是站不住脚的。
以往,人们认为被放射物污染的水中是不会有任何微生物的,但是实际上有几种细菌可以在核反应堆周围的足以让多种微生物致死的水中存活。
有两位科学家把一种蠓在100益的高温下烤了几个小时后,马上放进液氦中(液氦的温度低得和太空中一样)。经过强辐照后,他们把这些试验品再放回到正常的生活环境中。这些昆虫又恢复了活力,并且繁殖出了完全“健康”
的后代。
这无非举出了极端的例子。也许我们的后代将会在宇宙中发现连做梦也没有想到过的各种生命,发现我们在宇宙中不是唯一的,也不是历史最悠久的智慧生物。
地球外的茫茫宇宙中,究竟有没有生命?究竟有没有类似地球人甚至更文明的高级外星人?随着空间科学技术的不断发展,这个富有神话色彩的猜测,越来越激励着人们去探索。对这个亘古未解之谜,目前众说纷纭,莫衷一是。
最近,日本著名的宇航学教授佐贯亦男与地外生命学专家大岛太郎,发表了有关地外生命的对话,论点新颖,妙趣横生。