这真是所谓旧的谜团刚解开,新的迷雾扑面而来。科学探索本身就是一个“连环套”的智力冒险游戏。得出结论固然需要有科学的证据,但是每一代科学家都有自己的责任,他们毕竟不能等到完全掌握了“所有的证据”,才下郑重、精确的结论。科学探索需要脚踏实地,但如果没有各种假说、推理甚至幻想,科学探索一定非常枯燥不堪,人类前进的步伐一定很慢。
探索太阳命运
太阳如一团熊熊燃烧的火焰,给人类带来光明与温暖,勇气和希望。地球上一切活动的能量,几乎都源自太阳;如果没有太阳,黑暗、严寒会吞噬整个地球,我们美丽的家园将变成死寂的世界。太阳无比灿烂的光彩,还激发了人类丰富的想象能力,以致他们曾经把它当做神来崇拜。举世闻名的埃及吉萨地区的金字塔,每当春分这一天,它们的一个底边刚好指向太阳升起的地方;希腊神话中太阳神阿波罗的名字,被用来命名现代航空飞行器;古代各国的帝王们,更是把太阳看做至高无上、君临天下的象征。
宇宙中,太阳是距地球最近的恒星,日地距离只有1.5亿千米。太阳的直径大约为139.2万千米,是地球直径的109倍;太阳体积为地球的130万倍,而质量比地球大33万倍。太阳主要由氢、氦等物质构成,其中氢占73.5%,氦占25%;其他成分如碳、氮、氧等,只占太阳物质构成的1.5%。太阳核心的温度高达1500万~2000万K,每秒钟有6亿多吨的氢在那里聚变为氦;在这一过程中,每四个氢原子核聚变为一个氦原子核,而每产生一个氦原子,太阳就向外辐射一小部分能量。地球植物的光合作用,煤、石油等矿藏的形成,大气循环、海水蒸发、云雨生成等,这一切都离不开太阳的活动。10亿年来,地球的温度变化范围很小,不超过20益,这说明太阳的活动基本稳定,也为生命的孕育、演化提供了极好的条件。
到目前,太阳上的氢聚变反应已进行了几十亿年,有人担心太阳的能量总有一天会耗尽。的确,太阳的能量并非取之不尽,用之不完。如果氢不断减少,氦不断产生,未来的太阳会变成什么样?
根据恒星演化理论,从恒星中心核内的氢开始燃烧到它们全部生成氦,这一过程叫做“主星序阶段”。处于主星序阶段上的恒星称之为“主序星”。不同恒星体在主星序中存在的时间是不同的,这主要取决于该恒星体的质量。天文学家爱丁顿发现:质量越大的恒星体,它为抗衡万有引力而产生的热量也越多;产生热量越多,则星体膨胀速度越快;相应地,它留在主星序中的时间便越短。拿太阳来说,它和众多的恒星一样,目前正处于主星序阶段。根据科学家计算,太阳可在主星序阶段停留100亿年左右;而目前它处于主星序阶段上已46亿年了。质量比太阳大15倍的恒星只能停留1000万年,质量为太阳质量五分之一的恒星则能存在10000亿年之久。
当一颗恒星度过它漫长的青壮年期——主序星阶段,步入老年时,会首先变成一颗“红巨星”。之所以称为“巨星”,因为它的体积巨大,在这一阶段,恒星将膨胀到比原来体积大10亿多倍的程度;称它“红”巨星,因为在恒星迅速膨胀的同时,其外表面离中心越来越远。温度随之降低,发出的光也越来越偏红。尽管温度降低,红巨星的光度却变得很大,看上去极为明亮。目前人类肉眼看到的亮星中,有许多都是红巨星。现在,我们最熟悉的一颗红巨星是猎户星座的“参宿四”,其直径达11亿千米,为太阳直径的800倍。若“参宿四”在太阳的位置发光,红光会遍及整个太阳系。
从“主序星”衰变成“红巨星”,变化不仅仅是外在的,恒星的内核也发生了很大变化——从“氢核”变成了“氦核”。我们已经知道,恒星依靠其内部的热核聚变而熊熊燃烧着,核聚变的结果是每四个氢原子核结合成一个氦原子核;在这个过程中恒星释放出大量原子能并形成辐射压,辐射压与恒星自身收缩的引力相平衡。而当恒星中心区的氢消耗殆尽,形成由氦构成的氦核之后,氢聚变的热核反应便无法在中心区继续进行。此时引力重压没有辐射压来平衡,星体中心区会被压缩,温度随之急剧上升。恒星中心的氦核球温度升高后,紧贴它的那一层氢氦混合气体相应受热,达到引发氢聚变的温度,热核反应便重新开始。于是,氦核逐渐增大,氢燃烧层也随之向外扩展(恒星星体外层物质受热膨胀,就是它开始向红巨星或红超巨星转化的过程)。转化中,氢燃烧层产生的能量可能比主序星时期还要多,但星体表面温度不仅不会升高反而会下降。原因在于外层膨胀后受到的内聚引力减小,即使温度降低,其膨胀压力仍可抗衡或超过引力,此时星体半径和表面积增大的程度超过产能率的增长,因此总光度可能增长,表面温度却将下降。质量比太阳大4倍的大恒星在氦核外重新引发氢聚变时,核外放出的能量未明显增加,半径却增大了好几倍,因此恒星的表面温度由几万开氏度降到三四千开氏度,成为红超巨星。
质量比太阳小4倍的中小恒星进入红巨星阶段时表面温度下降,光度也将急剧增加,这是它们的外层膨胀消耗的能量较少而产能较多的缘故。
红巨星一旦形成,就会朝恒星演化的下一阶段——“白矮星”进发。当外部区域迅速膨胀时,氦核受反作用力将强烈向内收缩,被压缩的物质不断变热,最终内核温度将超过1亿益,从而点燃氦聚变。经过几百万年,氦核也燃烧殆尽,而恒星的外壳仍然是以氢为主的混合物。如此,恒星结构比以前复杂了:
氢混合物外壳下面会有一个氦层,氦层内部还埋有一个碳球。这样,恒星体(红巨星阶段)的核反应过程将变得更加复杂。其中心附近的温度继续上升,最终使碳转变为其他元素。与此同时,红巨星外部也开始发生不稳定的脉动振荡:恒星半径时而变大,时而缩小,稳定的主星序恒星将变成极不稳定的巨大火球。火球内部的核反应也会越来越趋于不稳定,忽强忽弱。此时,恒星内部核心的密度实际上已增大到每立方厘米10吨左右,可以说,在红巨星内部已经诞生了一颗白矮星。
白矮星是一种很特殊的天体,它体积小、亮度低、质量大、密度高。比如天狼星伴星(它是最早被发现的白矮星),体积比地球大不了多少,但质量却和太阳差不多!也就是说,它的密度为1000万吨/立方米左右。根据白矮星的半径和质量,可算出它的表面重力等于地球表面重力的1000万至10亿倍。在这样高的压力下,任何物体都将不复存在,连原子都会被压碎;电子也将脱离原子轨道变成自由电子。
白矮星的密度为什么这样大?我们知道,原子是由原子核和电子组成的,原子的质量绝大部分集中在原子核上,而原子核的体积很小。比如氢原子的半径为一亿分之一厘米,而氢原子核的半径只有十万亿分之一厘米。打个比方,假如原子核的大小如一颗玻璃球,那么电子轨道将在2千米以外。而在巨大的压力之下,电子将脱离原子核,成自由电子。这种自由电子气体会尽可能地占据原子核之间的空隙,从而使单位空间内包含的物质大大增多,密度大大提高。
形象地说,此时原子核是“沉浸于”电子中的,没有了原先与电子的“秩序”
和“距离”,科学上一般把物质的这种状态叫做“简并态”。简并电子气体压力与白矮星强大的重力平衡,一定时间内维持着白矮星的稳定;可是当白矮星质量进一步增大,简并电子气体压力就有可能抵抗不住引力而收缩,白矮星还会坍缩成密度更高的天体:“中子星”或“黑洞”。
对单星系统而言,由于没有热核反应来提供能量,白矮星在发出光热的同时,也以同样的速度冷却着。经过100亿年的漫长岁月,年老的白矮星将渐渐停止辐射死去。它的躯体会变成一个比钻石还硬的巨大晶体——“黑矮星”,孤零零飘荡在宇宙空间。对于多星系统来说,白矮星的演化过程可能没有这么简单,中途有可能发生改变,这需要科学家们进行更深入细致地研究。
最近,英国曼彻斯特大学和美国国家射电天文台的科学家,在曼彻斯特举行的国际天文学联合会大会上宣布,他们使用射电望远镜拍到了1000光年外的一颗恒星向外喷发气体的图像。这是迄今科学家拍到的最精细的太阳系外恒星活动图像。对这批图像进行研究,将有助于了解恒星接近死亡时的演化过程,从而预测出太阳的未来命运。科学家们观测的这颗恒星名叫TCAM,位于鹿豹星座,是一颗年老的“变星”,其亮度以88个星期为周期进行有规律的变化。
过去,科学家们每两周对TCAM进行一次观测,一直持续了88周(即该恒星的一个光变周期)。他们使用了“特长基线干涉测量”(VLBI)技术,在43吉赫频段记录恒星喷出的气体发出的射电波,结果获得了比哈勃太空望远镜所能拍到的同类图像精细500倍的图像。