登陆注册
49623100000025

第25章 第三分论坛(7)

In this paper,we first introduce new classes of generalized convex type-I functions by relaxing definitions of arcwise connected function and type-I function.We present some sufficient optimality conditions and dual theorems for non-differential multi-objective programming problem under various generalized convex type-I functions assumptions.This paper is divided into four sections.Section 2recalls some definitions and related results which will be used in later sections,and introduces new classes generalized convex type-I functions.In section 3and section 4,the sufficient optimality conditions and Mond-Weir type duality results are established for non-differential multi-objective programming problem involving these generalized convex functions,respectively.

2.Preliminaries

In this section,we first recall some concepts and results related arcwise connected functions.Let Rn be the n-dimensional Euclidean space and R1be the set of all real numbers.Throughout this paper,the following convention for vectors in Rn will be followed:

x<y if and only if xi<yi,i=1,2,…,n,

x≦y if and only if xi≦yi,i=1,2,…,n,

x≤y if and only if xi≦yi i=1,2,…,n,but x≠y,

x≮y is the negation of x<y.

Definition 2.1.(See [15])A subsetis said to be an arcwise connected(AC)set,if for every x∈X,u∈X,there exists a continuous vector-valued functions Hx,u:[0,1]→X,called an arc,such that

Hx,u(0)=x,Hx,u(1)=u.

Definition 2.2.(See[15])Let f be a real-valued function defined on an AC set.Then f is said to be an arcwise connected function (CN)if,for every x∈X,u∈X,there exists an arc Hx,u such that

f(Hx,u(θ))≦(1-θ)f(x)+θf(u),for 0≦θ≦1

Definition 2.3.(See [13-14])Let be an AC set,and Let f be a real-valued function defined on X.For any x∈X,u∈X,the directional derivative of f with respect to Hx,u at θ=0is defined as

provided the limit exists and is denoted by f +(Hx,u(0)).

If

exists and it is denoted by H+x,u(0),then vector H+x,u(0)is called directional derivative of Hx,u at θ=0.

Consider the following multiobjective programming problem:

(MP)min f(x)

4.Duality Results

Now,in relation to (MP)we consider the following Mond and Weir type dual under the CN-d-type-I and generalized CN-d-type-I assumptions.

satisfied.This leads to the similar contradiction as in the proof of Theorem 4.1.

References:

[1]M.A.Hanson and B.Mond,“Necessary and Sufficient conditions in constraint optimization,”Mathematical Programming,Vol.37,1987:51-58.

[2]B.Aghezzaf and M.Hachimi,“Generalized invexity and duality in multiobjective programming problems,”Journal of Global Optimization,Vol.18,2000:91-101.

[3]M.Hachimi and B.Aghezzaf,“Sufficiency and duality in differentiable multiobjective programming involving generalized type I functions,”Journal of Mathematical Analysis and Applications,Vol.296,2004:382-392.

[4]M.Hachimi and B.Aghezzaf,“Sufficiency and duality in nondifferentiable multiobjective programming involving generalized type I functions,”Journal of Mathematical Analysis and Applications,Vol.319,2006:110-123.

[5]R.N.Kaul,S.K.Suneja and M.K.Srivastava,“Optimality criteria and duality in multiple objective optimization involving generalized invexity,”Journal of Optimization Theory and Applications,Vol.80,1994:465-482.

[6]S.K.Mishra,G.Giorgi and S.Y.Wang,“Duality in vector optimization in Banach spaces with generalized convexity,”Journal of Global Optimization,Vol.29,2004:415-424.

[7]S.K.Mishra and M.A.Noor,“Some nondifferentiable multi-objective programming problems,”Journal of Mathematic Analysis and Applications,Vol.316,2006:472-482.

[8]S.K.Mishra,S.Y.Wang and K.K.Lai,“Multiple objective fractional programming involving semilocally type I-preinvex and related functions,”Journal of Mathematic Analysis and Applications,Vol.310,2005:626-640.

[9]A.Mehra and D.Bhatia,“Optimality and duality for minmax problems involving arcwise connected and generalized arcwise connected functions,”Journal of Mathematical Analysis and Applications,Vol.231,1999:425-445.

[10]N.G.Rueda,M.A.Hanson and C.Singh,“Optimality and duality with generalized convexity,”Journal of Optimization Theory and Applications,Vol.86,1995:491-500.

[11]Guolin Yu and Sanyang Liu,“Some vector optimization problems in Banach spaces with generalized convexity,”Computers and Mathematics with Applications,Vol.54,2007:1403-1410.

[12]Guolin Yu and Sanyang Liu,“Optimality for -multiobjective programming involving generalized type-I functions,”Journal of Global Optimization,Vol.41,2008:147-161.

[13]M.Avriel and I.Zang,“Generalized arcwise-connected functions and characterizations of local-global minimum properties,”Journal of Optimization Theory and Applications,Vol.32,1980:407-425.

[14]C.Singh,“Elementary properties of arcwise connected set and functions,”Journal of Optimization Theory and Applications,Vol.41,1990:85-103.

[15]R.N.Mukherjee and S.R.Yadav,“A note on arcwise connected sets and functions,”Bulletin of the Australian Mathematical Society,Vol.31,1985:369-375.

[16]D.Bhatia and A.Mehra,“Optimality and duality involving arcwise connected generalized connected functions,”Journal of Optimization Theory and Applications,Vol.100,1999:181-194.

[17]N.G.Rueda and M.A.Hanson,“Optimality criteria in mathematical programming involving generalized invexity,”Journal of Mathematical Analysis and Applications,Vol.130,1998:375-385.

[18]S.Davar and A.Mehra,“Optimality and duality for fractional programming problems involving arcwise connected functions and their applications,”Journal of Mathematical Analysis and Applications,Vol.263,2001:666-682.

1Yu Guolin,male,Ph.D.,associate professor,supervisor of postgraduate.

同类推荐
  • 梁实秋生活美学系列(全集)

    梁实秋生活美学系列(全集)

    人生,不过是一段来了又走的旅程,有喜有悲才是人生,有苦有甜才是生活。本套装包括《人生不过如此而已》、《简单 安静 从容——像梁实秋一样雅致生活》、《闲暇处才是生活》、《心守一事去生活》、《人间有味是清欢》五本著作,收录了梁实秋最具人生哲理、最有生活气息的散文。书中所写,都是寻常事物,吃饭、睡觉、读书、看戏,喝茶、饮酒、旅行、谈吃,但却透露出梁实秋先生知足自娱、豁达俊逸的心境,这一套书,从美食,生活,人生三个或大或小的角度,立体而丰满地展现了梁实秋的生活之道和人生观念。是了解梁实秋其人和其文的一套精选之作。
  • 暴雨将至

    暴雨将至

    这是著名诗人周瑟瑟耗费几年时间重点梳理和打磨的一部诗歌集。诗歌集收录了多年来周瑟瑟的代表作品,所选作品都是作者的得意之作。诗集按时间倒叙进行编排,是诗人周瑟瑟近30年来诗歌作品的总结之作,具有较高的文学价值。
  • 大于诗的事物(读诗)

    大于诗的事物(读诗)

    《读诗》自创刊迄今,已经编到第四卷。《读诗:大于诗的事物》作为第四卷的特辑部分,经由潘洗尘、宋琳、莫非、树才等主编,辑录了包括郑玲在内的当代诗人的代表作。伟大的诗歌需要伟大的读者。“好诗”是作者写出来的,也是读者读出来的。诗歌和读者总是在相互寻找;与诗歌相遇的那一刻,读者的目光被汉语的闪电所照亮,体验到个体生命存在的神秘和意义。
  • 惶然录

    惶然录

    《惶然录》是葡萄牙作家费尔南多·佩索阿晚期随笔结集,都是“仿日记”的片断体。它是作者的代表作之一,是一部曾经长期散佚的作品,后来由众多佩索阿的研究专家们搜集整理而成。作者在随笔中的立场时有变化,有时是个精神化的人,有时则成了物质化的人……这是变中有恒,异中有同,是自相矛盾中的坚定,是不知所云中的明确。正是这种精神气质、这种独自面向全世界的突围,使佩索阿被当代评论家誉为“欧洲现代主义的核心人物”、“杰出的经典作家”、“最能深化人们心灵”的作家。
  • 天火

    天火

    "或轻读,或精读,方便舒适有所得亦小说,亦散文,完整人格无所失《有价值悦读:天火》是“有价值悦读”丛书之一种。汇集文坛奇人汪曾祺老先生毕生小说及散文经典作品。可谓一书在手,揽尽老先生的人生意趣、思想品格。本书的许多篇什,已被收进大中小学生教材。"
热门推荐
  • 乾隆盛世的相声王爷

    乾隆盛世的相声王爷

    这是相声爱好者在起点中文的第二次穿越,悼念前辈张好古(也可能是张公公)。话说天宫有一马虎天官,办了件马虎事,于是,人间出状况了,两粒花生米酿成了一次穿越.资深相声票友附身在了乾隆朝有名的曲艺王爷弘昼身上,还带着太白金星送的盗版养成软件,和乾隆争皇位?还是安心做个太平王爷?要么干脆下海发展一下民族艺术,顺便和曹雪芹、纪晓岚会会文,跟和绅打打牌,有空的时候再带上自家的豪奴们出去溜达溜达,惩治个贪官污吏。民主阅读,本人决不强求,您是愿意看呢,愿意看呢,还是愿意看呢?
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 无限血途

    无限血途

    血路,注定是以鲜血浇灌的恐怖之路。路上行人萧瑟,路两旁尸骨漫天!
  • 弑神之箭

    弑神之箭

    没失恋、没仇杀、没后悔——为什么她会重生?作为自小懂得支持国家科研道路,与时俱进跟随国家科研步伐的资深游戏玩家,钟青在二十八岁那年莫名其妙回到了高考结束的那一天。而那天,正好是风靡全球的网游【荣耀】开服之日。思来想去不明白自己有什么重生价值的钟青顿悟:原来老天爷是想让她圆上辈子在游戏里没能圆的了的梦?————【荣耀】十年,神级盗贼钟青一朝梦醒,却回到了游戏刚刚开服。魔法与剑的世界再次在她面前拉开盛大序幕——这一次,她会重返巅峰,让宝藏猎人的足迹,踏遍整个荣耀的土地!
  • 吾非薄情

    吾非薄情

    【推新文:戏子凉薄】[甜虐都有]夜陌曾经喜欢过一个人,那个人,是在一辆公交上认识的。那个时候在上初一,就这么同他闹了起来。女扮男装,却变成了他的同桌,兼室友。朝夕相处,对他也开始改观。后来,喜欢上了他,很喜欢很喜欢,为了他,什么都愿意做,若说不愿意的,就是放开他的手。慢慢的,他开始喜欢夜陌,开始为了夜陌而改变,当他们终于在一起了,夜陌却消失了,什么都没有留下……再相见时,夜陌却是倒在他人怀里,笑魇如花。他难受,他心碎,他癫狂,却什么也挽回不了……
  • 一世倾心:误惹腹黑王爷

    一世倾心:误惹腹黑王爷

    她是异世而来,穿越到丑颜痴傻小姐身上的一抹幽魂。他是风华绝伦,冰冷残暴只爱把心事藏在心里的王爷。她第一次遇见他,他浑身是血,脑部受创,躺在草丛中让她救他。他第一次见她,她一双紫瞳,魅惑众生,却因一个桃花胎记,使她容貌大打折扣,奇丑无比。后来他唤她柒柒。“柒柒,你好丑。”恢复记忆后,他什么都记得,唯独忘了她。面对她的死缠烂打,他终于动了心。“你就是个笨蛋。”她揉揉她的脑袋,一脸宠溺。“你就是个白痴!”他用力覆上她的唇,邪魅一笑。“笨蛋配白痴,绝配!”
  • 神针王

    神针王

    方寒乃九阴绝脉之体,入尘世寻找下部《黄普针经》以求自治,却阴差阳错下成了医科大学的一名保安。
  • 让她想起我

    让她想起我

    她,小时候被父母抛弃,被流浪到孤儿院,自从遇见了他,她的生活改变了,可他的父亲要把他培养继承人,他们在高中遇到,她却忘记了他。
  • 杀手进入教练圈

    杀手进入教练圈

    杀手的精明,犹如狡猾的狐狸一般窜入NBA的舞台,成为新时代来临的践行者,犹如一位无法触动的篮球帝王一般,无法撼动,精明如炬
  • 万古霸尊

    万古霸尊

    一个偶然的意外,天赋极差的项乾获得了千古罕见的“霸气”,从此之后,修为突飞猛进!天地之间,霸气独尊!