登陆注册
47987900000008

第8章 数学教学的趣味奥秘推荐(5)

下面的故事最初在阿拉伯民间流传,后来传到了世界各国,故事说,一位老人养了17只羊,老人去世后在遗嘱中要求将17只羊按比例分给三个儿子,大儿子分给12,二儿子分给13,三儿子分19,在分羊时不充许宰杀羊。

看完父亲的遗嘱,三个儿子犯了愁,17是个质数,它既不能被2整除,也不能被3和9整除,又不许杀羊来分,这可怎么办?

聪明的邻居得到这个消息后,牵着一只羊跑来帮忙,邻居说:“我借给你们一只羊,这样18只羊就好分了。”

老大分18×12=9(只),

老二分18×13=6(只),

老三分18×19=2(只)。

合在一起是9+6+2=17,正好17只羊,还剩下一只羊,邻居把它牵回去了。

羊被邻居分完了。再深入想一想这个问题,我们会发现遗嘱中不合理的地方,如果把老人留的羊做为整体1的话,由于:

12+13+19=1718

所以或者是三个儿子不能把全部羊分完,还留下118,哪个儿子也没给1817;或者是要比他所留下的羊再多出一只时,才可以分,聪明的邻居就是根据1718这个分数,又领来一只羊,凑成1818,分去1718,还剩下118只羊,就是他自己的那只羊。

再看一道有关遗嘱的题目:

某人临死时,他的妻子已经怀孕,他对妻子说:“你生下的孩子如果是男的,把财产的23给他,如果是女的25,把财产的给她,剩下的给你。”说完就死了。

说也凑巧,他妻子生下的却是一男一女双胞胎,这一下财产将怎样分?

可以按比例来解:

儿子和妻子的分配比例是23∶13=2∶1

女儿和妻子的分配比便是25∶35=2∶3。

由此可知女儿、妻子、儿子的分配比例是2∶3∶6,按这个比例分配就合理了。

民谣中的

在世界各地流传着一些用民谣形式写成的数学题。

美国民谣:

“一个老酒鬼,名叫巴特恩,

吃肉片和排骨共用钱九角四分,

每块排骨一角一,每片肉价只七分,

连排骨带肉片吃了整十块哟,

问问你:

吃了几块排骨几片肉,我们的巴特恩?”

可以这样来解算:

假设巴特恩吃的是十片肉片的话,他一共花70分钱,用94分减去70分,得差24分,这24分钱是什么呢!

由于巴特恩吃的不都是肉片,有排骨,而一块排骨比一片肉片贵11-7=4分,这24分是排骨和肉片差价得到的,可以求出巴特恩吃的排骨数:

(94-7×10)÷(11-7)=24÷4=6(块)

10-6=4(片)

巴特恩吃了六块排,四片肉片。

中国也有类似的民谣:

“一队强盗一队狗,

二队并作一队走,

数头一共三百六,

数腿一共八百九,

问有多少强盗多少狗?”

这道题和《孙子算经》中的“鸡兔同笼”是同一种类型题,只不过,把鸡换成强盗,把兔换成狗就是了,具体算法是:

(360×4-890)÷(4-2)=275

360-275=85

强盗有275人,狗有85条。

还有首中国民谣:

“几个老头去赶集,

半路买了一堆梨,

一人一个多一个,

一人两个少两梨。

究竟有几个老头、几个梨?”

设人数为x,则梨为x+1个,依题意,得:

2x=(x+1)+2,

x=3,

x+1=4

“寒鸦与树枝”是一首俄罗斯的民谣:

“飞来几只寒鸦,

落到树枝上停歇。

要是每支树枝上

落下一只寒鸦,

那么就有一只寒鸦

缺少一支树枝;

要是每支树枝上

落下两只寒鸦,

那么就有一支树枝

落不上寒鸦。

你说共有几只寒鸦?

你说共有几支树枝?”

可以这样来解:

如果每支树枝上落两只寒鸦,比每支树枝落一只寒鸦共多出2+1=3只寒鸦,而这时每支树枝上所落寒鸦只数的差是2-1=1只。

用多出来的寒鸦数除以每支树枝寒鸦数,就等于树枝数。

因此,

(2+1)÷(2-1)

=3÷1=3(支)

寒鸦数为3+1=4(只)。

答案是有3支树枝,4只寒鸦。

下面这首民谣也很有趣,是中国民谣:

“牧童王小良,放牧一群羊。

问他羊几只,请你细细想。

头数加只数,只数减头数。

只数乘头数,只数除头数。

四数连加起,正好一百数。”

其实头数和只数是一回事,因此,只数减头数得0,只数除头数得1。这样一来,有:只数×只数+2×只数=99。

使用试验法,可得只数等于9,因为

9×9+2×9=99,故羊有9只。

21.“数”是怎样产生的

“数”是人类在生产劳动等社会实践中产生的。在远古时期,我们的祖先在狩猎、捕鱼以及后来的家禽饲养和劳动工具的制作等等生产劳动过程中,为了估计产量和生活需要量,逐渐产生了有关数的概念。

人类最初产生的“数”的概念是“有”和“无”。例如大家出去打猎,可能打得到,也可能一无所获,于是就渐渐产生了“有”与“无”的概念。进而产生了“多”与“少”的概念,如甲打到了5只野兔,乙打到了3只野兔,甲就比乙多打了2只。

22.“0”的神奇

关于“0”

在公元前约2000年至1500年左右,最古老的印度文献中,已有“0”这个符号的应用,“0”在印度表示空的位置。后来这个数字从印度传入阿拉伯,意思仍然表示空位。

我国古代没有“0”这个符号,最初都用“不写”或“空位”来作解决的方法。《旧唐书》和《宋史》在讲论到历法时,都用“空”字来表示天文数据的空位。南宋时《律吕新书》把118098记作:“十一万八千九十八”,可见当时是用表示“0”,后来为了贪图书写时方便,将顺笔改成为“0”形,与印度原先的意义相通。

不能做除数

0不能做除数,我们可以从下面两种情况来谈点道理:

一种情况,如果被除数不是零,除数是零时,例如9÷0=?,根据乘、除法的关系,就是说要找一个数,使它与0相乘等于被除数9,但是任何数与0相乘都等于0,而绝不会等于9。

另一种情况是被除数和除数都是零,例如0÷0=?,就是说要找一个数,使它与0相乘等于0。因为零与任何数相乘都得零,所以要找的数不止一个,可以是任何数,那么0÷0的商不能得到一个确定的数,这是违反了四则运算结果的惟一性。因此零除以零是没有意义的。根据上述两种情况都可以看出零是不能做除数的。

当然,还可以从等分除法的意义上看,除数是0是不能存在的。如有12本书,分给0个学生,平均每个学生分得几本,既然没有学生分这些书,就不可能求出每个学生分得几本书,所以0是不能做除数的。

为什么“0”不能做除数

这个问题,我们可以根据乘除法的关系从以下两方面来分析、理解。一方面,如果被除数不是0,除数是0,比如5÷0=?根据“被除数=商×除数”的关系,求5÷0=?就是要找一个数,使它与0相乘等于被除数5。我们知道,任何数与0相乘都等于0,而绝不会等于5。这就是说,被除数不是0,除数是0,商是不存在的。

另一方面,如果被除数和除数都是0,即0÷0=?,就是说要找一个数,使它与0相乘等于0。前面已说过,任何数与0相乘都等于0,与0相乘等于0的数,有无限多个,所以0÷0的商不是一个确定的数,这就不符合四则运算的结果是惟一的这个要求,所以0÷0也是没有意义的。

根据上述两种情况可以看出“0”是不能做除数的。

“0”的意义表示没有吗?

在实际生产和生活中,通常用“0”表示没有。例如,电视机厂生产了一批彩电,经检验没有不合格的,那么不合格产品的个数就用“0”表示。又如,屋里一个人也没有,这屋里的人数就是“0”。

但是“0”的意义不仅仅表示没有,它还可以表示其他的意义。例如:

1.表示起点。我们二年级就开始学习用米尺去量一支铅笔的长度,要把铅笔的一端对准米尺上标有“0”的起点处,然后再看铅笔的另一端所指的刻度,这时就可以知道铅笔有多长。这样量既准确又简便。

又如,当我们学习了24时记时法,我们就用0点作为第二天的开始时刻。

2.表示数位。例如一个学校有学生840人,这里“840”中的“0”是不能随便去掉的,因为“0”同样占有一定的数位,如果去掉“0”,变成“84”人,就错了。又如,我们在三年级学习一位数除多位数时,就知道商不够1,用“0”占位的道理,如312÷3=104。再如,我们四年级学习小数时就知道,把一个小数的小数点向左右移动时,若位数不够,一定要用“0”补足。如“把3.5扩大1000倍”,就要把3.5的小数点向右移动三位得到“3500”;“把3.5缩小1000倍”,就要把3.5的小数点向左移动三位,得到“0.0035”,在整数部分还不能忘记写0。

3.表示精确度。当我们取近似数需要表示精确度时,小数末尾的“0”是不能随意去掉的。例如,要把4.795保留到百分位(即保留两位小数)应得4.80。又如,加工两个零件,要求一个零件长35毫米,另一个零件长35.0毫米,前者表示精确到1毫米,后者表示精确到0.1毫米。显然后者比前者的精确度高。

4.表示界限。“0”还可以表示某些数量的界限。例如,气温有时在摄氏0度左右。摄氏0度是不是表示没有温度呢?当然不是。它是指通常情况下水开始结冰的温度。在摄氏温度计上“0”起着零上温度和零下温度的分界作用。到中学学正负数时,会知道“0”既不是正数,也不是负数,而是惟一存在的中性数,是正数和负数的分界。

5.用于编号。车票、发票等票据上的号码,往往有“00357”等字样,表示357号。之所以要在“357”前面添上两个“0”,是表示印制这种票据时,最高号码是五位数,以便今后查核。

6.记账需要。在商品标价和会计账目中,由于人民币的最小单位是“分”,在书写时习惯上保留两位小数。例如三元五角往往写成3.50元,不写成3.5元。

“0”除了表示以上这些意义外,还有许多特性,如“0”没有倒数,“0”的相反数是0,单独的一个0不是一位数……

“0”为什么不属于自然数

因为自然数是从表示“有”多少的需要中产生的,用来表示物体的个数的数,因此,自然数的计数单位是1。每当有实物存在而又需要计数时,才有数的意义。如果表示没有物体存在,当然也就谈不上数了,这时就产生了一个新的数——零,用符号“0”来表示。所以“0”不是自然数,它比自然数都小。

23.为什么“1”既不是质数,又不是合数

把390分解质因数:390=2×3×5×13。

如果把“1”算做质数,那么把390分解质因数还有下列一些结果:

390=1×2×3×5×13,

390=1×1×2×3×5×13,

……

也就是说,在分解式里,可以添上几个因数“1”,这样做,一方面对于求390的质因数毫无必要,另一方面造成分解质因数的结果不惟一。因此,规定“1”不算质数。如果将“1”算做合数,那么将它分解质因数得1=1×1×1×……×1,结果也不是惟一的,因此,“1”也不算合数。

“1”有哪些意义和作用

1.1是自然数中最小的一个,1再加上1就得到自然数2,2再加上1就得到自然数3,等等。

2.1是自然数的单位,任何一个自然数都是由若干个1合并而成的,如498,就是由498个1组成的。

3.1只有一个约数,就是它本身,所以1既不是质数,也不是合数。

4.公约数只有1的两个数,可以判断是互质数。

5.一个数(0除外)与1相乘,仍得原数。

6.一个数(0除外)除以1,仍得原数。所以1可以整除所有的自然数,它是一切自然数的约数。

7.同数相除(0除外)得1。

8.任何自然数都可以改写成分母是1的假分数。如5=51。

9.因为互为倒数的两个数乘积是1,所以用1除以一个数,就得到这个数的倒数。如8的倒数是。

10.在分数里,1可以作为单位“1”,表示由一些物体组成的整体。如一个国家的人口,一堆小麦的重量,一条公路的长度,一筐苹果的个数……均可以看做单位“1”。

24.最小的一位数是0还是1

我们知道,位数表示一个整数所占有数位的个数;数位是指一个数的每一个数字所占的位置。对于3082这个数而言,我们说它是4位数。如此看来,0也占一个数位了。但是记数法里有个规定:一个数的最高位不允许是0,为什么要加上这个规定呢?如果没有这个规定的话,那么“0”就应该是最小的一位数,因此,00是最小的两位数,000是最小的三位数……那么,这样一来,最小的一位数、两位数、三位数乃至任意位数都是0,这显然是错误的。不仅如此,如果没有这样的规定,对一个数也就没办法确定是几位数了。例如8是一位数,08就变成两位数,008就变成三位数……也就是说,同一个数,我们可以任意称它为几位数了。“位数”这一概念也就没有存在的必要了。因此,我们平常所说的一位数、两位数或更多的位数只是指自然数。0不是自然数,不能说它是几位数。那么,最小的一位数是0还是1呢?同学们清楚了吗?

你也许还会问:生活中不是有许多08、009、038这样的数吗?这是怎么回事呢?原来,这是在特定条件下表示特定意义的。如田径运动会上某运动员的号码是028,表示参加该运动会的运动员数不足或刚好是1000人。

同类推荐
  • 人与环境知识丛书:中国环保先锋

    人与环境知识丛书:中国环保先锋

    《中国环保先锋》介绍了环保领域的演说家、野生动物的保护者、致力于环保技术研究的创新者、为环保呼吁的新闻工作者、投身环保事业的教育家、承担中国绿色希望的环保少年等,他们在环保事业中作出了各自杰出的贡献,对人与自然的和谐发展进行了宝贵探索,用坚定的信念和对大自然的热爱实现了个人价值。
  • 雨林动物探索大百科

    雨林动物探索大百科

    本书有针对性地选择了最具代表性的雨林动物辑录成册,为读者介绍了它们在这个神奇的雨林世界中,如何嬉戏玩耍,如何觅食生存,如何与天敌斗争,如何繁衍生息等。不仅可以满足读者对知识的需求,更能激发读者探索大自然的兴趣。
  • 站在巨人肩上-从阿基米德谈物理学起源

    站在巨人肩上-从阿基米德谈物理学起源

    本套《站在巨人肩上》丛书,共30本,每本以学科发展状况为主脉,穿插为此学科发展做出重大贡献的一些杰出科学家的动人事迹,旨在从文化角度阐述科学,突出其中的科学内核和人文理念,增强读者科学素养。
  • 建筑科技解说(下)

    建筑科技解说(下)

    本套书简明扼要,通俗易懂,生动有趣,图文并茂,体系完整,有助于读者开阔视野,深化对于中华文明的了解和认识;有助于优化知识结构,激发创造激情;也有助于培养博大的学术胸怀,树立积极向上的人生观,从而更好地适应新世纪对人才全面发展的要求。
  • 图文科普-元素的故事

    图文科普-元素的故事

    本书从元素起源的故事、非金属元素的故事、金属元素的故事、惰性气体的故事、不可见光的故事这五个方面生动形象的介绍了元素。
热门推荐
  • 小王子

    小王子

    《小王子》是作家安东尼·德·圣-埃克苏佩里于1942写成的著名法国儿童文学短篇小说。本书的主人公是来自外星球的小王子。书中以一位飞行员作为故事叙述者,讲述了小王子从自己星球出发前往地球的过程中,所经历的各种历险。作者以小王子的孩子式的眼光,透视出成人的空虚、盲目和愚妄,用浅显天真的语言写出了人类的孤独寂寞、没有根基随风流浪的命运。同时,也表达出作者对金钱关系的批判,对真善美的讴歌。
  • 紫青双剑录(第四卷):幻波 妖尸(经典系列)

    紫青双剑录(第四卷):幻波 妖尸(经典系列)

    《蜀山剑侠传》为「天下第一奇书」,经过增删、续写之后,改名《紫青双剑录》,自成面目,情节曲折离奇,而在结构上,其大体上各自独立的特点,也使得每一本分卷独立成篇,不会有前后不连贯之感,都可以看得人津津有味。本卷出现的神驼乙休乃是出色之极的怪侠,为全书老一辈人物中最爽朗可爱的一个。而余英男得达摩老祖遗下的南明离火剑的一段,有达摩老祖对归一大师所说的偈语,大有禅机;这一段故事,在许多武侠小说中都被「借用」过。由南明离火剑,又引出了天一真水来。天一真水在海底的紫云宫中,其间述及金鬚奴的脱胎换骨,写金鬚奴和二凤之间的风光,旖旎之至。及后火海取宝,大破紫云宫等情节,也各自精采纷呈,使人看得神为之夺!
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 人本是神

    人本是神

    这一年女娃还小,白素贞还未出挑……哪吒还在抱奶瓶,嫦娥已经万种风情……他一介凡俗来到众神世界,与少年的他们一起成长……
  • WiFi有密码

    WiFi有密码

    作者:亦复如是书名:《WiFi有密码》“你好易华侨”脑海中二人第一次因为上网问题定下了许多协议,那是她占了便宜,随后的日子里她总喜欢利用WiFi密码让他屈服于自己,也因为WiFi密码她对他渐生情愫。“对不起”二人之间的情感似乎都在用密码传递着,有时候密码成了她传递自己心情的一种媒介,这种比语言更让他懂的心情密码也让她沉沦其中。“我爱你”他的密码还萦绕在心头,可是已经物是人非,梓瑶轻盈站起,杏叶如流沙一样滑走,不留一丝痕迹。
  • 打开心灵之门

    打开心灵之门

    生命走到青春时节、也就是到了最灿烂的花季。这是一个如梦如幻的季节,一个渴望自由的季节,也是一个逐步走向成熟的季节。
  • 异世之道医临世

    异世之道医临世

    如果这世界给了我想守护的人,那我便拼死守护它。如果这世界不能够给我所想要的,那我便势必毁了它。一朝丹成,万古雷劫,一生医道,可救人于死亡黄泉路,可送人于灰飞烟灭。万古世界,道医再现之际,谁与争锋。比武怕你不是对手,炼丹?怕你还差我几个纪元。
  • The Science of Right

    The Science of Right

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 名臣名儒家训

    名臣名儒家训

    本书选取中国历史上70多位著名政治家和62位著名学者有关家规、家范、家诫等家训篇章,做了严谨准确的编著,分为标点、注释、翻译、评析几个环节,有利于读者在了解历史人物,理解中国古代思想学说、古汉语知识、历史知识的同时,在这些耐人寻味、发人深省的家训中取得教育子女的真经。
  • 灰色中的拯救

    灰色中的拯救

    4个年轻人奋勇组队调查某个城镇的瘟疫事件,当他们调查中,从古代穿越过来一个丰功伟绩的古代人,和他们一起调查事件,从而演变2女3男的队伍,瘟疫事件不是天然事件,幕后黑手的阴谋是否得逞,5个年轻人的爱恨情仇从调查这件事开始发生变化。