总之,光合作用涉及的知识多、综合性强,在复习时要全面,特别是光合作用的反应场所、总反应式、反应具体过程、条件、反应物、产物、释放能量、光反应与暗反应之间的相互联系与区别、影响光合作用的诸多因素等方面做全面的比较、总结,并注重这些知识能与生产生活等实际相联系,培养分析、综合、读图、理论联系实际的能力。
进行光合作用的意义的教学时,可以在课前自己收集或让学生收集诸如当今世界面临的粮食、化石能源、环境污染、生物多样性受到破坏等资料,课上可以采取分组讨论的形式,选择几个典型的事例,围绕光合作用的生态意义这个中心,引发学生的思考和讨论,使学生切实体会到“光合作用是生物界最基本的能量和物质代谢”和生产、环境,激发学生学习的兴趣。
【扩展资料】
叶绿体中的色素
叶绿体片层结构上的色素可分为两类:一类为作用中心色素,少数特殊状态的叶绿a分子属于此类,它具有光化学活性,既是光能的“捕获器”,又是光能的“转换器”。另一类是聚光色素,没有光化学活性,只有收集和传递光能的作用,能把光能聚集起来,当波长范围为400mm~700mm的可见光照到绿色植物上时,聚光系统的色素分子的吸收光量子被激发起来,光能就在色素分子间以诱导共振的方式进行传递,并迅速传递到作用中心色素分子,完成光能的转化。聚光色素包括大部分叶绿素a和全部叶绿素b、胡萝卜素、叶黄素等都属于这类色素。
叶绿素a与叶绿素b的成分很相似,都不能溶解于水,但能溶解于酒精、丙酮和石油醚等有机溶剂中。它们的不同之处在于:叶绿素a分子比叶绿素b分子多两个氢原子,少一个氧原子;在颜色上,叶绿素a呈蓝绿色,叶绿素b呈黄绿色。这两种色素在高等植物绿叶中的比通常是3∶1。
绝大部分叶绿素a分子和全部叶绿素b分子具有吸收光能的作用。少数不同状态的叶绿素a分子具有将光能转变为电能的作用。
叶绿素吸收光的能力极强。如果把叶绿素溶液放在光源与分光镜之间,就可以看到光谱中有些波长的光线被吸收了,因此,在光谱上就出现了黑线或暗带,这种光谱叫做吸收光谱。叶绿素吸收光谱的最强吸收区有两个:一个在波长为640~660nm的红光部分;另一个在波长为430~450mm的蓝紫光部分。此外,在光谱的橙光、黄光和绿光部分有不明显的吸收带,其中尤其对于绿光的吸收最少。由于叶绿素吸收绿光最少、所以叶绿素的溶液呈现绿色。
叶绿素a与叶绿素b的吸收光谱很相似,但也略有不同:首先,叶绿素a在红光部分的吸收带窄些;而叶绿素b在红光部分的吸收带窄些,在蓝紫光部分的宽些。其次,与叶绿素b相比较,叶绿素a在红光部分的吸收带偏向长光波方面,而在蓝紫光部分则偏向短光波方面。胡萝卜素和叶黄素的吸收光谱与叶绿素的不同,它们的最大吸收带在蓝紫光部分,而不吸收红光等光波较长的光。
叶绿体中的类胡萝卜素也含有两种色素,即胡萝卜素和叶黄素。类胡萝卜素不能溶解于水,但能溶解于有机溶剂中。在颜色上,胡萝卜素呈橙黄色,叶黄素呈黄色。
胡萝卜素的化学组成是,叶黄素的化学组成是。这就是说,叶黄素分子比胡萝卜素分子多两个氧原子。
类胡萝卜素也有吸收光能的作用,除此之外,还有保护叶绿素、防止强烈光照伤害叶绿素的功能。
胡萝卜素和叶黄素的吸收光谱与叶绿素的不同,它们的最大吸收带在蓝紫光部分、而不吸收红光等光波较长的光。
影响光合速率的因素
1.影响光合速率的内部因素。据研究,植物的种类不同,光合速率不同;同一植物在不同的生长发育阶段、同一植株不同部位的叶片、同一叶片的不同生长发育时期,光合速率都有明显差异。
2.影响光合的环境因素。
(1)光照强度。光是光合作用的能量来源,光照强度直接影响光合速率。在其他条件都适宜的情况下,在一定范围内,光合速率随光照强度提高而加快。当光照强度高到一定数值后,光照强度再提高而光合速率不再加快,这种现象叫光饱和现象。开始达到光饱和现象的光照强度称为光饱和点。在光饱和点以下,随着光照强度减弱,光合速率减慢,当减弱到一定光照强度时,光合吸收二氧化碳量与呼吸释放二氧化碳的量处于动态平衡,这时的光照强度称为光补偿点,此时植物制造有机物量和消耗有机物量相等。据研究,不同类型植物的光饱和点和补偿点是不同的。阳性植物的光饱和点和补偿点一般都高于阴性植物。
(2)二氧化碳浓度。二氧化碳是光合作用的两种原料之一,因此,环境中二氧化碳的浓度与光合速率有密切关系。在自然条件下,陆生植物主要从空气中吸收二氧化碳,水生植物或暂时浸泡在水中的植物体,吸收溶于水中的二氧化碳。
空气中二氧化碳含量占空气体积的0.033%左右,据研究,这一含量对植物光合作用来说是比较低的,在较强的光照下,它限制了光合速率。例如,将棉花、玉米放在二氧化碳为0.064%的空气中与0.033%的自然条件下进行比较,结果棉花的光合速率提高了1.5倍,玉米的光合速率提高了15%。
(3)温度的高低。温度对光合作用的影响比较复杂,它一方面可以直接影响光合作用中各种酶的活动、光合结构,还通过影响其他相关的代谢活动而影响光合作用。不同植物对温度反应不同,一般最适温度在25℃。
【探究活动】
探究光强、光质、温度、二氧化碳浓度
对光合作用的影响
一、实验目的
学习光强、光质、温度、二氧化碳浓度等外界条件对光合作用的影响
二、实验原理
因为影响光合作用的内部及外部因素在不断变化,因此植物光合作用强度经常改变着。影响光合作用的外界因素主要有光强、光质、温度、二氧化碳浓度。影响光合作用的内部因素主要有叶片叶绿素的含量、叶片含水量、叶片的发育阶段等等。
一般而言,光强增加,光合作用强度增强。但由于植物的生活习性不同,在光强增加相同的情况下,光合作用强度的增强程度并不相同,并且当光强增加到一定限度时,光合作用不再增加了。
因光合色素对不同性质的光的吸收值是不同的,因此不同颜色的光也会影响光合作用的强度,红光、蓝紫光光合作用强度大,其他颜色的光会使光合强度下降,绿光的光合强度几乎为零。
因温度直接影响光合作用过程中光反应与暗反应酶的催化活性,因此也会影响光合作用的强度。一般而言,温度在0℃~35℃之间时,每增加10℃光合强度增加一倍;但超过40℃~50℃后,光合强度下降。
因二氧化碳是光合作用的底物之一,因此它的含量直接影响光合强度,在一定的浓度范围内,增加二氧化碳浓度,光合作用强度加强。
三、实验材料和用具
黑藻或金鱼藻、碳酸氢钠、高瓦数聚光灯、温度计、大烧杯等。
四、实验步骤
1.光强度对光合作用的影响。
取几条黑藻或金鱼藻,将其剪成几段,放在装有自来水的大烧杯中(杯中已放入少量的碳酸氢钠以产生二氧化碳),使烧杯中水高于植物体2~3厘米。
把此装置放在聚光灯下,很快有气泡从切口中冒出。
把此装置放在距光源分别为10cm、30cm、50cm的地方(用冰块控制各烧杯中的水温,用温度计监测水温)。
每个距离都每隔一定的时间计数排出的气泡数。
2.光质对光合作用的影响。
取几条黑藻或金鱼藻,将其剪成几段,放在装有自来水的大烧杯中(杯中已放入少量的碳酸氢钠以产生二氧化碳),使烧杯中水高于植物体2~3厘米。
把此装置放在聚光灯下,很快有气泡从切口中冒出。
把此装置放在距光源300cm地方(控制各烧杯中的水温一致),分别用红色、蓝色、黄色、绿色的透明玻璃纸把该装置包起来。
每种颜色的光质都每隔一定的时间计数排出的气泡数。
3.温度对光合作用的影响。
取几条黑藻或金鱼藻,将其剪成几段,放在装有自来水的大烧杯中(杯中已放入少量的碳酸氢钠以产生二氧化碳),使烧杯中水高于植物体2~3厘米。
把此装置放在聚光灯下,很快有气泡从切口中冒出。
把此装置放在距光源300cm地方,用冰块和热水控制各烧杯中的水温在室温、0℃、50℃。
每种温度都每隔一定的时间计数排出的气泡数。
4.二氧化碳浓度对光合作用的影响。
取几条黑藻或金鱼藻,将其剪成几段,放在装有自来水的大烧杯中,使烧杯中水高于植物体2~3厘米。
放在黑暗处一天,使黑藻或金鱼藻体内的机物消耗掉。
把此装置放在聚光灯下,很快有气泡从切口中冒出。
把此装置放在距光源300cm地方(控制各烧杯中的水温一致),各烧杯中放入碳酸氢钠量分别从0依次增加一些,并用玻璃棒搅拌一下。
每个烧杯都每隔一定的时间计数排出的气泡数。