登陆注册
14872400000011

第11章 硕果累累数学战略家谷超豪传(2)

(3) 混合型方程

混合型偏微分方程是受跨音速流动的推动而发展起来的。自1923年意大利数学家F·G·特里科米(Tricomi)发表第一篇混合型方程的文章到二十世纪50年代末这几十年间,混合型方程虽引起了人们的重视,但由于问题的复杂性和缺乏有力的工具,一直未有长足的进步,绝大多数研究集中在对一些二自变数的特殊的二阶线性方程(如特里科米方程等)的个别定解问题上,而且结论也相当零碎。谷超豪在二十世纪60年代中期成功地将由他所发展的正对称方程组的理论应用于混合型方程的研究,将相当广泛的一类二阶多元线性与拟线性混合型方程,特别是与锥形体超音速绕流密切相关的布斯曼(Busemann)方程,化为正对称组,得到一大批可解的定解问题,证明了经典解的适定性,并深刻揭示了混合型方程的低阶项对定解条件的提法及解的正则性的本质影响。这一对多元混合型方程以及拟线性混合型方程的开创性研究,改变了混合型方程研究的面貌,赢得了国际数学界的高度评价。弗里德里希斯认为谷超豪实现了他将正对称方程组用于混合型方程的夙愿。1976年,美国数学家代表团访问中国后,也称赞谷超豪的工作“十分新颖和相当重要”。1982年,谷超豪又将多元混合型方程的理论从二阶推广到高阶的情况,对高阶多元混合型方程做出了先驱性的工作。谷超豪还和合作者一起进行了钝头物体超音速绕流的计算,给出工程上所需要的数值结果。

(4) 微分几何与数学物理中的非线性嫡微分方程

调和映照作为某一作用量的极值,是测地线、极小曲面等概念的扩充。以往的研究均限于具有正定度量的黎曼空间上的调和映照问题,相应于对某一类椭圆型方程组的求解。谷超豪于1980年首先研究了从二维闵可夫斯基(Minkowsky)空间BI到任何完备黎曼流形的调和映照,将问题化为求解一个有端由解的一阶偏导数的二次项所组成的二阶半线性双曲组的初值问题,借助于几何上的考虑,证明了经典解的整体存在性,并由此揭示了一维非线性—模型若在某一时刻无奇性,则其过去及未来均无奇性的事实。这一出人意料的深刻结果开创了调和映照领域的一个新的研究方向,在国际上引起很大的反响,并诱发了进一步的工作。谷超豪还和法国科学院院士Y·舍盖夫人(Choquet·Bruhat)合作研究了从四维闵可夫斯基空间到对称空间的双曲调和映照问题,在小初值的假设下得到解的整体存在性。

二十世纪80年代中期以来,谷超豪还系统研究了与弦运动有关的四维闵可夫斯基空间中的类时极值曲面,并首先研究了同时包含类时、类光与类空部分的混合型极值曲面。这一研究同样涉及到拟线性的混合型方程,谷超豪从零长解析曲线出发,提出了一个统一的构造方法,不仅得到了整体的精确解,而且在双曲域中证明了解的解析性(c’解必为解析)。他还提出了混合型极值曲面的一些边值问题,特别是制作通过给定边界曲线的极值曲面的问题,并证明了边界曲线为不封闭的零长曲线时解的存在性。

谷超豪密切注意这种微分方程组和流体力学之间的联系,然后和学生们合作,解决了间断初始值局部解存在性问题,写成论文《拟线性双曲型方程组的不连续初始值问题》、《双曲型方程组的一个边界问题和它的应用》,解决了超音速机翼绕流的数学问题。他的学生李大潜、俞文在这些工作的基础上,完整地建立了二自变数拟线性双曲型方程组的边值问题局部解的理论。

接着,谷超豪在高音速的锥形流和跨音速流问题的教学研究中,遇到了混合型方程的边值问题。他致力于发展1958年弗里德里希斯所提出的正对称方程组的理论,于是把当时已有的一阶可微性理论发展为高阶可微性的理论,从而成为一项讨论线性方程以及拟线性方程经典解存在性的有效工具。在论文《一类多自变数的混合型偏微分方程》中,他建立了一大类多自变数的混合型方程的解的存在性定理。同时,他还发现了一个新性质:对这种二阶方程,有某些闭区域,即使在边界上给出两个边界条件,解仍然存在而且是唯一的,如果变动一下方程的低阶项,不给定边界条件,解也只能有一个。这些成果也是二十世纪70年代美国数学家代表团访问中国时才被世界所发现的。

《科学家传记大辞典》编辑组:《中国现代科学家传记》(第五集),科学出版社,1991.9.p.34。

数学物理

1974年,诺贝尔物理学奖获得者杨振宁到复旦大学做规范场理论报告,他说,他发现规范场理论研究基本粒子结构及其相互作用的规律,牵涉到一系列复杂的现代数学。当时,杨振宁的父亲杨武之是复旦大学数学系教授,杨武之向他推荐了复旦大学微分几何研究组。在报告会上,谷超豪等数学系、物理系的教师作出了热烈反响,使杨振宁认识到复旦的数学家们不仅有雄厚的理论基础和研究能力,还有对现代物理学问题的深入了解。于是,杨振宁决定和复旦大学进行合作。复旦方面成立了联合研究小组,谷超豪是这一学科的带头人,谷超豪的妻子胡和生先生一直致力于微分几何的研究,在这一团队中也是领军人物。

在课堂上“刚开始,我们先听他做报告,然后开始讨论,他给我们提出了一些问题,当天,我和胡和生就做出了两项研究成果。第二天跟他讲,他觉得非常高兴。他原先没有料到,复旦有人懂他的东西。”谷超豪这样回忆说。

当时,杨振宁提出了一个“洛仑兹规范”的存在性问题,谷超豪和胡和生当天就解决了。几天后,谷超豪和胡和生就以规范场的数学结构获得了两项研究成果,在国际上最早证明了杨米尔斯(Mills)方程的初始问题的局部解的存在性,又弄清了无源规范场和爱因斯坦引力论的某些联系和区别,所得的结果远远早于国际上有关的工作。他总结了规范场的研究成果,谷超豪团队将这一理论成果写成专著《经典规范场理论》。世界著名的《物理学报告》用整整一期的篇幅刊登这一专著,并在英文全文之前刊印了一份中文摘要,这是谷超豪首次在外国科学期刊上看到自己祖国的文字,很是开心。通过这些研究,谷超豪还从物理学中又提炼出了“波映照”问题,得到的结果又引发了一批国际学者进行后续研究。这以后,杨振宁又两次来复旦大学合作研究,都取到了很有意义的成果。

(1) 规范场

规范场理论源于电磁场,是物理学家杨振宁和R·L米尔斯(Mils)于1954年提出的,又称杨米尔斯场。二十世纪60年代后期,物理学家L·格拉肖(Glashow)、S·魏因伯格(welnberg)及A·萨拉姆(salam)利用这一理论所建立的弱相互作用与电磁相互作用的统一理论已为实验所证实,而规范势的概念又和数学中纤维丛上的联络相对应,这使规范场的研究进一步引起了学界的重视。

1974年,杨振宁到复旦大学访问,发现谷超豪对规范场有自己的见解,能够理解他所用的物理语言,也能用物理学家便于接受的语言来表达深奥的数学思想,于是,他与谷超豪开始了他认为是“卓有成效的合作”。杨米尔斯方程是关于规范势的一组非常复杂的二阶非线性双曲型方程组,对它的初值问题,谷超豪与杨振宁于1975年最早证明了其局部解存在的唯一性。杨振宁曾用他所提出的道路位相因子来研究规范场。谷超豪于1976年建立了(闭)环路位相因子的方法,成功地将纤维丛中的和乐群理论应用到规范场的研究之中,并证明了利用某些标准环路的位相因子和规范场强可唯一地决定规范势。这一方法在其后的研究中得到了广泛的应用。

谷超豪还和胡和生合作,利用李群的理论,完全决定了球对称规范场的一般结构及其分类,并给出规范势的具体表达式,为具体决定规范场作出了贡献。谷超豪给出一般紧致李群的规范场关于希格斯(Hlggs)场的分解,从而得出了磁单极和拓扑荷,并给出了拓扑荷的数值及几何解释。杨振宁曾将谷超豪的这一项研究比喻为“站在高山上往下看,看到了全局”。

(2) 孤立子

孤立子理论起源于传播过程中以及相互作用后保持波形不变的孤立波的研究。谷超豪从二十世纪80年代后期开始进入当代非线性科学的这一热门且重要的领域。很多具有孤立子解的非线性偏微分方程可以视为一个线性方程组(称为拉克斯(Lax)对)的可积条件,从而原则上可利用达布(Darboux)变换的方法,由一个已知的解只通过一次积分及每次重复进行的代数运算,构造出一系列新的函数解。但要证明它们就是所考察的那些非线性偏微分方程的解,以往只能对每一具体方程分别进行验算,计算十分冗长,甚至实际上无法实现。谷超豪与胡和生合作,用巧妙的构思给出了普适性的方法,对具有孤立子解的一系列重要的数学物理方程,如肋V梯队、M(dVSG)梯队以至更广泛的AKNS系统都适用,大大发展了达布变换的方法。在对二阶AI(Ns)系统的达布矩阵的研究基础上,谷超豪和美国数学家D·萨廷根分别独立地给出了一般的n阶AKNS系统的达布矩阵的显式表达式,为n阶AKNS系统中的非线性方程的显式求解提供了一个有效的方法,应用范围十分广泛。

谷超豪还和胡和生合作,对孤立子解的性态进行了研究,揭示了一些有趣的新现象,如周期振荡的孤立波,孤立子相互作用时会产生非弹性散射、无限次碰撞和相互粘合,以及非线性模型的螺旋形的孤立子解等,为孤立波的研究增添了新的内容,受到广泛的重视。

1977年,谷超豪作为中国高等教育代表团成员访问美国。在加州大学柏克莱分校、麻省理工学院、纽约州立大学石溪分校、马里兰大学,谷超豪就偏微分方程和规范场的数学结构用英语做了4次学术报告,受到听讲的数学家、物理学家的欢迎。陈省身教授写信给中科院数学所,赞赏谷超豪的成就。任之恭教授等还向我驻美联络处表示祝贺。访美期间,谷超豪还访问了被誉为国际偏微分方程研究中心的美国纽约大学柯朗数学研究所,拜访了著名老数学家弗里特里克斯——当年,正是他提出了正对称方程组的理论。谷超豪谈到了自己以此理论为工具研究混合型偏微分方程的情况,75岁的弗里特里克斯特别高兴,他说,谷超豪的工作实现了他想把正对称方程进一步用于混合型方程的夙愿。

50多年来,谷超豪在微分几何、偏微分方程和数学物理三个领域作出了重要贡献。他在国内外发表了一百多篇数学论文,并应邀在美国、墨西哥、西德、法国、意大利、日本、英国、苏联、保加利亚等国举行的十多次国际会议上做过大会报告。他曾担任过第二届、第六届国际“双微”会议和非线性物理会议的组织委员会主席以及会议论文集主编。世界著名的北荷兰出版社的学术杂志《物理学报告》用整整一期的篇幅刊载了他的专著《经典规范场理论》。在英文全文之前,还刊印了一份中文摘要,这是他第一次见到外国科学期刊上的祖国文字。此外,他还撰写、编写了《齐性空间微分几何》1978年,他的《规范场的数学结构》获得全国科学大会的嘉奖,1982年,以谷超豪为首的偏微分方程和规范场这两个研究项目分别获得国家自然科学二等奖和三等奖。1980年,谷超豪被选为中国科学院学部委员。1985年和1986年,以他为主的研究项目《调和映照与规范场》、《混合型偏微分方程及其应用》又分别获国家教委科学技术进步一等奖。

谷超豪著:《齐性空间微分几何》,上海科学技术出版社,1965.1、《孤立子理论与应用》与郭柏灵、李翊神、曹策问、田畴、屠规彰、胡和生、郭本瑜、葛墨林合著,浙江科技出版社,1990.9、《数学物理方程》谷超豪等5人合著,上海科技出版社,1979.9等。

谷超豪先生后来在接受采访时说:“做数学研究,我有两个特点。一是注意相邻学科对数学提出的问题,希望数学对其他学科能起到作用;二是我喜欢做自己提出的问题,在一个领域获得突破后,第二届华罗庚数学奖我会让学生们继续深入下去,而我会再去做新的东西,在新的领域作出自己的贡献。局外人很难理解在数学这片神奇的国土里探索的错综复杂,就像在崇山峻岭中摸索,忽而山途渺茫,忽而峰回路转。你完全可能在走了一大段路程后,发现竟然回到了原地;你也许走啊、走啊,突然发现了前人的足迹,原来自己还是步了别人后尘。数学家都想走一条自己的路!”谷超豪先生的这一段话,显然是对自己事业的每次转型的最好解答。

同类推荐
  • 贝多芬传

    贝多芬传

    傅雷经典译注,罗曼·罗兰倾世巨著《巨人三传》之一—《贝多芬传》,是对音乐艺术大师贝多芬一生的真实素描。罗曼·罗兰将贝多芬的遗嘱、书信,整理成集收入其中,不仅以优美的语言讲述了音乐大师贝多芬充满传奇色彩的人生,更将一个伟大心灵展现在读者面前。贝多芬所处的年代,是一个“破”与“立”相冲突的时代。他的成功掩隐着无可言说的苦痛,他的一生就是一个天才的艺术家与多难的命运斗争的过程,那是“苦难铸成的欢乐”。
  • 中国古代贪官传(中国古代名人传奇丛书)

    中国古代贪官传(中国古代名人传奇丛书)

    吏治清则国脉旺,吏治浊则国势颓。毋庸置疑,吏治腐败是最大的腐败,是社会政治生活中诸多腐败的源头,为害最烈。翻阅史册,贪官如蚁,罄竹难书。在本书编写中,比较系统地选择了上自先秦,下至二十一世纪初中国历史上每个朝代具有一定代表性的贪官。古人云:“以钢为镜,可以正衣冠;以古为镜,可以知兴衰;以人为镜,可从明得失。”揭露批判中国历代贪官的劣迹,可以警醒世人。为此,编者编著了《中国古代贪官传》。
  • 李鸿章全传之李鸿章传(第一部)

    李鸿章全传之李鸿章传(第一部)

    李鸿章,最具争议的晚清重臣之一,开启中国近代化进程的第一人。他是中国近代史上许多屈辱条约的签字者,然而中国近代化的许多“第一”又都与他的名字联在一起,如中国第一家近代化航运企业——轮船招商局、中国第一条自己修筑的商业铁路、中国人自行架设的最早的电报线、中国第一批官派留学生、中国第一支近代化的海军等等。国人骂他,是因为觉得他与晚清的许多耻辱有直接关系;西方人敬他,因为认为他是中国近代史上第一个真正的杰出外交家。
  • 军事家成长故事

    军事家成长故事

    编者精选了著名文学家、军事家、思想家、艺术家、谋略家、外交家、发明家、科学家等重要人物的成长故事,这些故事纵横古今,包罗中外,蕴含着文化的力量,闪烁着智慧的光芒。相信孩子们会在轻松的阅读旅程中,收获快乐,接受启迪,让心智得到充分的滋养。英国著名科学家弗朗西斯·培根曾言:用伟人的事迹来激励孩子,远胜于一切教育。该书就是遵循这一教育理念,遴选了世界上最伟大的军事家,以生动的故事娓娓讲述了他们的成长历程。让孩子们读这些军事家的故事,依循他们的成长路径前行,“名人”的桂冠就有可能在前面。
  • 因祸得福:窦太后

    因祸得福:窦太后

    她是清河良家女,背井离乡进入宫廷;她阴差阳错,被命运放逐到偏远代国;她因祸得福,受到代王的宠爱;她母凭子贵,顺利登上皇后的宝座;她协助治理国家,文景盛世之中有她一份功劳……风雨飘摇的秦朝末年,窦漪房出生在一户贫苦的人家,从小过着缺衣少食的生活,家庭中接二连三的惨剧使她从小就磨炼出了与众不同的坚强性格。可能是上天眷顾这个身世凄苦的少女,窦漪房在长到如花似玉的年龄时被汉朝选人宫中,并被阴差阳错地送到了代国,获得了代王的宠幸。
热门推荐
  • 天玄仙尊录

    天玄仙尊录

    你在想什么,女神?赌石?开玩笑,烂透的套路,要玩点新的!
  • 话痨球王

    话痨球王

    他是NBA历史上最话痨的天王巨星......
  • 向远方我所向

    向远方我所向

    叶雨韩是个孤独患者,每天中午十二点都会到学校天台遥望。天台的管理者没法和她交流,后也没告诉老师。同学们感觉她“生人勿近”。没有朋友。很奇怪,几乎每一个靠近她的人,最终都会遂她心意,仿佛被控制一样。
  • 异界乱穿

    异界乱穿

    一个什么都不会的宅男,因为未知的使命,穿越到不同的异界,展开了一段又一段搞笑,奇妙,惊险的旅程
  • 此情雨雪

    此情雨雪

    宋雪,一个姥姥不疼舅舅不爱的女孩,虽然自卑,虽然怯懦,但是她却很努力的活着,偶尔强装出来的淡定很让人心疼。宋雪本来以为自己会这样平凡的生活一辈子,但是同学的设计,同事的排挤,朋友的猜疑,亲人的背弃,这一切的一切都因为莫非宇出现了,这个霸道的男人,这个一市之长,就这样闯进了宋雪的生活。宋雪不知道,对自己来说,莫非宇的出现到底是福还是祸。
  • 儿时梦事

    儿时梦事

    奇了,他怎会如此执着?怪了,似乎一切都是为他准备,佳人也好,实力也罢,都是被提前准备的。嘶—这种生活不知有多少人羡慕啊!局中局,而他就是不愿如此被人蒙着眼睛牵着鼻子
  • 不过是个神而已

    不过是个神而已

    人们都说,她是神。余念获得了一个系统,它可以通过发展信徒吸收信仰值,来创造和改变这个世界。系统:请选择您要进入的世界——仙侠世界——请自由重置个人形象——您是这个世界的神,祝您生活愉快!余念来到这里之后,这个世界就发生了翻天覆地的变化!在这个世界,每个人都有身份卡,通过它你可以进入信息网。里面有个人修为、宠物、装备排行榜,还可以在网上购物就会有人马上将东西送到你家,当然,你也可以没事和小伙伴上网讨论下乱七八糟的事情,八卦一下!对了,这里还有个神奇的酒楼!你的修为将决定你可以去到多高的楼层吃饭。据说,最顶层不仅免费,而且可以俯瞰整个国家呢!你确定,不来试一试?
  • 陌生的来客

    陌生的来客

    我可以什么都不要,我只想拥有一颗属于自己的心脏,那里可能会有你,也可能什么都没有。
  • 妃卿天下:皇后三出墙

    妃卿天下:皇后三出墙

    夜闌卿,你叫我滚,我滚了,你叫我回来,对不起,滚得有点远了,回不来了。当初我抱着你大腿,让你别逼我出墙,你丫楞是没回头朝我看一眼,我还回来让你糟践?我,不犯傻。夜阑卿死妖孽寿宴上一曲‘鬼哭狼嚎’的【青藏高原】,竟让龙月国俊美非凡的宗帝看上了我。夜阑卿随意地说‘宗帝若是喜欢,就送与你好了’。这样淡然的语气,让我覺得,他是在送一件廉价的东西。我恨,我悔,当初若是唱【双截棍】是不是我的人生或许没有如此坎坷。情节虚构,切勿模仿。
  • 愿有人陪你到老

    愿有人陪你到老

    总有一个人,愿陪你颠沛流离到老,那个人,一定会在未来的某一天等你!而他们,又能陪彼此到老?